Video force microscopy reveals the mechanics of ventral furrow invagination in Drosophila.

نویسندگان

  • G Wayne Brodland
  • Vito Conte
  • P Graham Cranston
  • Jim Veldhuis
  • Sriram Narasimhan
  • M Shane Hutson
  • Antonio Jacinto
  • Florian Ulrich
  • Buzz Baum
  • Mark Miodownik
چکیده

The absence of tools for mapping the forces that drive morphogenetic movements in embryos has impeded our understanding of animal development. Here we describe a unique approach, video force microscopy (VFM), that allows detailed, dynamic force maps to be produced from time-lapse images. The forces at work in an embryo are considered to be decomposed into active and passive elements, where active forces originate from contributions (e.g., actomyosin contraction) that do mechanical work to the system and passive ones (e.g., viscous cytoplasm) that dissipate energy. In the present analysis, the effects of all passive components are considered to be subsumed by an effective cytoplasmic viscosity, and the driving forces are resolved into equivalent forces along the edges of the polygonal boundaries into which the region of interest is divided. Advanced mathematical inverse methods are used to determine these driving forces. When applied to multiphoton sections of wild-type and mutant Drosophila melanogaster embryos, VFM is able to calculate the equivalent driving forces acting along individual cell edges and to do so with subminute temporal resolution. In the wild type, forces along the apical surface of the presumptive mesoderm are found to be large and to vary parabolically with time and angular position, whereas forces along the basal surface of the ectoderm, for example, are found to be smaller and nearly uniform with position. VFM shows that in mutants with reduced junction integrity and myosin II activity, the driving forces are reduced, thus accounting for ventral furrow failure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Biomechanical Analysis of Ventral Furrow Formation in the Drosophila Melanogaster Embryo

The article provides a biomechanical analysis of ventral furrow formation in the Drosophila melanogaster embryo. Ventral furrow formation is the first large-scale morphogenetic movement in the fly embryo. It involves deformation of a uniform cellular monolayer formed following cellularisation, and has therefore long been used as a simple system in which to explore the role of mechanics in force...

متن کامل

Drosophila gastrulation: analysis of cell shape changes in living embryos by three-dimensional fluorescence microscopy.

The first event of Drosophila gastrulation is the formation of the ventral furrow. This process, which leads to the invagination of the mesoderm, is a classical example of epithelial folding. To understand better the cellular changes and dynamics of furrow formation, we examined living Drosophila embryos using three-dimensional time-lapse microscopy. By injecting fluorescent markers that visual...

متن کامل

Collective mechanics of embryogenesis: Formation of ventral furrow in Drosophila

We propose a 2D mechanical model of the ventral furrow formation in Drosophila that is based on undifferentiated epithelial cells of identical properties whose energy resides in their membrane. Depending on the relative tensions of the apical, basal, and lateral sides, the minimal-energy states of the embryo cross-section includes circular, elliptical, biconcave, and buckled furrow shapes. We d...

متن کامل

Cell shape changes during gastrulation in Drosophila.

The first morphogenetic movement during Drosophila development is the invagination of the mesoderm, an event that folds a one-layered epithelium into a multilayered structure. In this paper, we describe the shape changes and behaviour of the cells participating in this process and show how mutations that change cell fate affect this behaviour. We divide the formation of the mesodermal germ laye...

متن کامل

Microtubule distribution reveals superficial metameric patterns in the early Drosophila embryo.

Microtubule distribution was examined in whole mounts of Drosophila embryos from the cellularization of the syncytial blastoderm (stage 6) to the completion of the gastrulation (stage 7) by fluorescence microscopy. During ventral furrow formation, the fluorescence of tubulin network was not uniform, but disposed in zebra stripes. Antibodies against alpha-tubulin showed 14 alternating pairs of d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 51  شماره 

صفحات  -

تاریخ انتشار 2010